Abstract

Phase extraction methods based on the principal component analysis (PCA) can extract objective phase from phase-shifted fringes without any prior knowledge about their shift steps. Although it is fast and easy to implement, many fringe images are needed for extracting the phase accurately from noisy fringes. In this paper, a simple extension of the PCA method for reducing extraction error is proposed. It can effectively reduce influence from random noise, while most of the advantages of the PCA method is inherited because it only modifies the construction process of the data matrix from fringes. Although it takes more time because size of the data matrix to be decomposed is larger, computational time of the proposed method is shown to be reasonably fast by using the iterative singular value decomposition algorithm. Numerical experiments confirmed that the proposed method can reduce extraction error even when the number of interferograms is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.