Abstract
Using a D-optimal design of experiments, the influences of feedstock powder and plasma gases on deposition efficiency, gas tightness, and the electrochemical behavior of vacuum plasma-sprayed yttria-stabilized zirconia for solid oxide fuel cell electrolytes were examined. In-flight particle temperature and velocity, measured by online particle diagnostics, were correlated with plasma and deposit properties. Electrochemical testing of cells was performed to determine the influence of gas tightness and microstructure of electrolyte deposit on cell behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.