Abstract
The advent of powerful edge devices and AI algorithms has already revolutionized many terrestrial applications; however, for both technical and historical reasons, the space industry is still striving to adopt these key enabling technologies in new mission concepts. In this context, the current work evaluates an heterogeneous multi-core system-on-chip processor for use on-board future spacecraft to support novel, computationally demanding digital signal processors and AI functionalities. Given the importance of low power consumption in satellites, we consider the Intel Movidius Myriad2 system-on-chip and focus on SW development and performance aspects. We design a methodology and framework to accommodate efficient partitioning, mapping, parallelization, code optimization, and tuning of complex algorithms. Furthermore, we propose an avionics architecture combining this commercial off-the-shelf chip with a field programmable gate array device to facilitate, among others, interfacing with traditional space instruments via SpaceWire transcoding. We prototype our architecture in the lab targeting vision-based navigation tasks. We implement a representative computer vision pipeline to track the 6D pose of ENVISAT using megapixel images during hypothetical spacecraft proximity operations. Overall, we achieve 2.6 to 4.9 FPS with only 0.8 to 1.1 W on Myriad2 , i.e., 10-fold acceleration versus modern rad-hard processors. Based on the results, we assess various benefits of utilizing Myriad2 instead of conventional field programmable gate arrays and CPUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.