Abstract
The IEEE 802.11 backoff algorithm is very important for controlling system throughput over contentionbased wireless networks. For this reason, there are many studies on wireless network performance focus on developing backoff algorithms. However, most existing models are based on saturated traffic loads, which are not a real representation of actual network conditions. In this paper, a dynamic control backoff time algorithm is proposed to enhance both delay and throughput performance of the IEEE 802.11 distributed coordination function. This algorithm considers the distinction between high and low traffic loads in order to deal with unsaturated traffic load conditions. In particular, the equilibrium point analysis model is used to represent the algorithm under various traffic load conditions. Results of extensive simulation experiments illustrate that the proposed algorithm yields better performance throughput and a better average transmission packet delay than related algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wireless & Mobile Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.