Abstract

An improved method of de novo peptide sequencing based on mass spectrometry using novel N-terminal derivatization reagents with high proton affinity has been developed. The introduction of a positively charged group into the N-terminal amino group of a peptide is known to enhance the relative intensity of b-ions in product ion spectra, allowing the easy interpretation of the spectra. However, the physicochemical properties of charge derivatization reagents required for efficient fragmentation remain unclear. In this study, we prepared several derivatization reagents with high proton affinity, which are thought to be appropriate for peptide fragmentation under low-energy collision-induced dissociation (CID) conditions, and examined their usefulness in de novo peptide sequencing. Comparison of the effects on fragmentation among three derivatization reagents having a guanidino or an amidino moiety, which differ in proton affinity, clearly indicated that there was an optimal proton affinity for efficient fragmentation of peptides. Among reagents tested in this study, derivatization with 4-amidinobenzoic acid brought about the most effective fragmentation. This derivatization approach will offer a novel de novo peptide sequencing method under low-energy CID conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.