Abstract

Density Functional Theory with Hubbard U parameter (DFT + U) was used to study the impact of C (6.25%) and Fe (12.5%) mono- and co-doping on wurtzite GaN, which modified the structural, electrical, magnetic, and optical properties. Under conditions of abundant N, the doping effect led to an increase in thermodynamic formability. For all the dopant combinations, a reduction in the band gap was seen. GaN becomes a ferrimagnetic material because of co-doping. The performance of the C and Fe co-doped GaN was the best due to the redshift of the absorption edge, which resulted in the improved absorption of near ultraviolet (UV) and visible-infrared (VIS-IR) photonic energies for both monodoping and co-doping structures. The doping caused an increase in the refractive index and dielectric constant. For C and Fe co-doped GaN, the maximum static dielectric constant and refractive index were 19.58 and 4.45, respectively. The findings of this work therefore point to the possible use of C, Fe mono- and co-doped GaN in UV, IR optoelectronic and photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.