Abstract

Typically, parallel algorithms are developed to leverage the processing power of multiple processors simultaneously speeding up overall execution. At the same time, discrepancy between DRAM bandwidth and microprocessor speed hinders reaching peak performance. This paper explores how operational intensity improves by performing useful computation during otherwise stalled cycles. While the proposed methodology is applicable to a wide variety of parallel algorithms, and at different scales, the concepts are demonstrated in the machine learning context. Performance improvements are shown for Bayesian logistic regression with a Markov chain Monte Carlo sampler, either with multiple chains or with multiple proposals, on a dense data set two orders of magnitude larger than the last level cache on contemporary systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.