Abstract

To address the challenges posed by low immunogenicity and immune checkpoints during cancer treatment, we propose an alternative strategy that combines immunogenic cell death (ICD) effects with CD47/SIRPα blockade to reactivate phagocytosis of tumor cells by macrophages with polysaccharide-based drug delivery. In this study, the EGFR inhibitor gefitinib was identified as a novel CD47 modulator, which promoted the translocation of CD47 molecules from the cell membrane to endosomes through the EGFR-Rab5 pathway, leading to reduced cell surface CD47 levels and limiting interaction with SIRPα. Based on this finding, we developed prophagocytic mixed nanodrugs to enhance macrophage phagocytosis by encapsulating ICD inducer doxorubicin and CD47 inhibitor gefitinib with immunostimulatory polysaccharides from Ganoderma lucidum. This approach downregulated cell surface CD47 expression to attenuate "don't-eat-me" signaling, while increasing doxorubicin accumulation in tumors by inhibiting drug-resistance proteins, leading to more exposure of calreticulin and amplifying the "eat-me" signaling. In vivo experiments demonstrated that this approach significantly suppressed intraperitoneal tumor dissemination, reversed doxorubicin-induced weight loss, and effectively induced macrophage polarization, dendritic cell maturation, and CD8+ T cell activation. These findings highlighted the significant potential of our macrophage-centered therapeutic strategy using polysaccharide-based nanocarriers and provided new perspectives for chemoimmunotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.