Abstract

Microprocessor speeds have been improving much faster than memory speeds, resulting in the CPU spending a larger and larger amount of time waiting for data. Processor designers have employed several ways to improve memory performance, including hierarchical caching, prefetching, and faster memory chips. Yet, memory accesses still represent a major performance bottleneck and much remains to be done to tolerate the increasing memory latencies. Load-value prediction has been shown to effectively hide some of this latency. However, the hardware required to achieve good performance is substantial, making load-value prediction unappealing in light of increasing power constraints. In this paper, we present a novel predictor that significantly increases CPU performance while at the same time decreasing the energy consumption of the entire processor relative to a baseline with a well-performing hybrid load-value predictor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.