Abstract

In a previous study, we demonstrated that spectral counts-based label-free proteomic quantitation could be improved by distributing peptides shared between multiple proteins. Here, we compare four quantitative proteomic approaches, namely, the normalized spectral abundance factor (NSAF), the normalized area abundance factor (NAAF), normalized parent ion intensity abundance factor (NIAF), and the normalized fragment ion intensity abundance factor (NFAF). We demonstrate that label-free proteomic quantitation methods based on chromatographic peak area (NAAF), parent ion intensity in MS1 (NIAF), and fragment ion intensity (NFAF) are also improved when shared peptides are distributed on the basis of peptides unique to each isoform. To stabilize the variance inherent to label-free proteomic quantitation data sets, we use cyclic-locally weighted scatter plot smoothing (LOWESS) and linear regression normalization (LRN). Again, all four methods are improved when cyclic-LOWESS and LRN are applied to reduce variation. Finally, we demonstrate that absolute quantitative values may be derived from label-free parameters such as spectral counts, chromatographic peak area, and ion intensity when using spiked-in proteins of known amounts to generate standard curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.