Abstract

Distribution system operators aim to improve hosting capacity (HC) of distribution networks (DNs) to accommodate more distributed rooftop photovoltaics (PVs). Although PV power generation delivers numerous benefits, power unbalance and voltage rise are two major obstacles that limit the network HC. To mitigate these issues, battery energy storage systems (BESSs) can be applied. Thus, this paper proposes a robustly optimal allocation method for BESSs, which aims to reduce the power unbalance and alleviate the voltage rise, and thus improve the HC of the unbalanced three-phase DNs. Considering that locations and capacities of distributed rooftop PVs are determined by customers, future PV installations are regarded as uncertainties. In addition, to deal with the uncertainties, the proposed BESS allocation problem is formulated as an adaptive robust optimization (ARO) model with integer recourse variables. Accordingly, a solution algorithm which integrates an alternating optimization procedure into a column-and-constraint generation algorithm is developed to efficiently solve the ARO model. With the proposed BESS allocation method, a new perspective on HC improvement is provided, which not only considers the worst power unbalance situation but also satisfies the allowed maximum PV capacity. The simulation results verify high efficiency and solution robustness of the proposed allocation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.