Abstract

AbstractThe design of domain independent heuristic functions often brings up experimental evidence that different heuristics perform well in different domains. A promising approach is to monitor and reduce the error associated with a given heuristic function even as the planner solves a problem. We extend this single-step-error adaptation to heuristic functions from Partial Order Causal Link (POCL) planning. The goal is to allow a partial order planner to observe the effective average-step-error during search. The preliminary evaluation shows that our approach improves the informativeness of the state-of-the-art heuristics. Our planner solves more problems by using the improved heuristics as compared to when it uses current heuristics in the selected domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.