Abstract
Graphene derivatives doped with nitrogen have already been identified as active non-noble metal materials for oxygen reduction reaction (ORR) in PEM and alkaline fuel cells. However, an efficient and scalable method to prepare active, stable, and high-surface-area non-noble metal catalysts remains a challenge. Therefore, an efficient, potentially scalable strategy to improve the specific surface area of N-doped graphene derivatives needs to be developed. Here, we report a novel, rapid, and scalable electrical induction heating method for the preparation of N-doped heat-treated graphene oxide derivatives (N-htGOD) with a high specific surface area. The application of the induction heating method has been shown to shorten the reaction time and improve the energy efficiency of the process. The materials synthesized by induction heating exhibited very high specific surface area and showed improved ORR activity compared to the conventional synthesis method. Moreover, we demonstrated that the temperature program of induction heating could fine-tune the concentration of nitrogen functionalities. In particular, the graphitic-N configuration increases with increasing final temperature, in parallel with the increasing ORR activity. The presented results will contribute to the understanding and development of nonmetal N-htGOD for energy storage and conversion applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.