Abstract

When the surface integral equation method is applied to study electromagnetic scattering by dielectric or composite metallic and dielectric objects, the unknowns, i.e., the electric and magnetic surface current densities, and the elements of the system matrix, are often of the very different scales. As a consequence, the system matrix may have a high (singular value) condition number. An efficient method is presented to balance the unknowns and the integral equations, and the elements of the system matrix, too. The method is based on the use of normalized field quantities and unknowns, and carefully chosen scaling factors. In the case of dielectric and composite objects the condition numbers of the SIE matrices can be reduced with several orders of magnitudes by the developed method. In the case of high contrast objects, or if the frequency is very low, the developed method leads also to a clear improvement on the convergence of iterative solutions

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.