Abstract
The seminal work by Pagh [1] proposed a matrix multiplication algorithm for real-valued squared matrices called Compressed Matrix Multiplication (CMM) having a sparse matrix output product. The algorithm is based on a popular sketching technique called Count-Sketch [2] and Fast Fourier Transform (FFT). For input square matrices A and B of order n and the product matrix AB with Frobenius norm ||AB||F, the algorithm offers an unbiased estimate for each entry, i.e., (AB)i,j of the product matrix AB with a variance bounded by ||AB||F2/b, where b is the compressed bucket size. Thus, the variance will eventually become high for a small bucket size. In this work, we address the high variance problem of CMM with the help of a simple and practical technique based on classical variance reduction methods in statistics. Our techniques rely on the Control Variate (CV) method. We suggest rigorous theoretical analysis for variance reduction and complement it via supporting empirical evidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.