Abstract

The radiation-hardened performances of static induction transistor (SIT) have been studied in depth in this paper. The effects of radiation of electron beam on the I-V characteristics, carrier distribution and potential distribution in the channel of SIT have been represented. A large number of electron-hole pairs are generated in the depletion region of reversely biased gate-channel PN junction. The radiation-generated electrons drift towards the drain region at high positive potential, while generated holes flow into gate region biased to the lowest potential. With the accumulation of holes in gate region, the gate potential is boosted, resulting in a decrease in the height of potential barrier in channel, and an increase in drain current. I-V characteristics of SIT in the presence of radiation have been theoretically derived, and compared with experimental results. With the increase in thickness of epitaxial layer, the radiation-hardened capability of SIT is continuously improved until the optimum thickness of 26 μm is reached. The optimum matching relationship among geometric, material and technological parameters has been represented to acquire excellent radiation-hardened performances of SIT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.