Abstract

This paper proposes an iterative calibration technique to enhance the linearity for multilevel LINC transmitters. With this approach, the precision of characterising AM/AM and AM/PM behaviours for discrete levels can be improved, which results in better adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) performance. An ML-LINC transmitter is built with two PAs in GaN technology, which delivers 40.8 dBm output power with 68% drain efficiency at 2.05 GHz. Up to 5 dB ACLR improvement can be observed by iterative calibration using S1/S2 for a 5 MHz LTE signals. The configuration with 16 levels can give satisfying linearity performance to meet the standard specification, while keep the complexity reasonable. Measurement results show an ACLR of −46 dBc, EVM of 1.9% (QPSK) and 4.2% (64-QAM) at average output power of 35.7 dBm with 51.1% drain efficiency for a 10 MHz LTE signals with a PAPR of 7.9 dB. The performance of the built ML-LINC tranmitter is compared to the state-of-the-art. Both the linearity and drain efficiency are quite competitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.