Abstract

3-D orthogonal woven composite (3DOWC) has attracted great interest in the industrial and energy fields, due to their excellent mechanical properties. However, due to the poor bonding strength between fiber and epoxy, it’s mechanical properties, especially the fatigue behavior are critical for structural design in the practical applications. The nanoclay modification composite reinforced with 3-D orthogonal woven fabric (3DOWF)/epoxy resin was fabricated using resin infusion under flexible tooling (RIFT). The quasi-static tensile and fatigue behavior of 3-D orthogonal woven composite (3DOWC) in 0 ° and 90 ° inclined to warp direction were evaluated and compared to the pristine one or composite material not modified with nanoclay. The fatigue behavior such as the S-N curves, stress-strain curves, stiffness degradation curves and residual strength were also obtained. The results show that the tensile strength, modulus and the fatigue life were improved effectively due to nanoclay modification. However, the stiffness degradation of nanoclay addition in 90 ° direction was decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.