Abstract

High capacity silicon-graphite composite anode materials were made by dispersing silicon in a sol-gel graphite (SGG) matrix. The capacity increased with increasing Si content and the best application performance was delivered by a composite containing 19.2 wt % Si, where the first cycle discharge and charge capacities were 1033.7 mAh g - 1 composite (or 4311 mAh g - 1 Si) and 832.2 mAh g - 1 composite (or 3474 mAh g - 1 Si), respectively (80.5% coulombic efficiency). Capacity fading was less than 12% in 25 cycles, which is a substantial improvement over unsupported silicon anodes where precipitous drop in capacity occurs within a few cycles. The improvement is attributed to the presence of the SGG matrix, which, with its extensive open 3D network, effectively cushioned the volume change in the electrode during charging and discharging reactions, hence raising the usability in applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.