Abstract

The use of phase change material as an efficient way to use building energy has recently been discovered as this material occupies 40 % of the total carbon emissions through energy used in the building sector. In order to apply phase change materials to buildings, phase stabilization must first be achieved; some researchers have developed shape-stabilized phase change material (SSPCM). In this study, the enthalpy-temperature function based on the thermal properties of 22 types of SSPCMs were analyzed and applied to a dynamic energy simulation program. The SSPCM was applied to improve the low heat storage performance of wooden buildings along with building energy savings. The SSPCM was applied to the inner side of a 20-mm-thick external wall in a case study concerning the inside and outside of an external wall. An analysis of the annual energy consumption of buildings showed that applying SSPCM resulted in average savings of 5 %. To confirm the improvement in the heat storage performance of buildings, the indoor temperature behavior during the heating and cooling periods was analyzed. Maintaining the thermal inertia of SSPCM was found to have reduced the peak temperature in summer by 4.1 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.