Abstract

BackgroundSilicon single-photon avalanche diodes (Si-SPADs) are the most used devices for measuring ultra-weak optical radiant fluxes in many quantum technology fields, such as quantum optics, quantum communication, quantum computing, etc. In all these fields, the detection efficiency is the main parameter, which has to be accurately known for achieving reliable measurements. In this paper we present the improvements performed on the setup described in López et al. (J Mod Opt 62:S21–S27, 2015) for determining the detection efficiency of Si-SPAD detectors with a low measurement uncertainty. The improvement arises from the precise alignment of the Si-SPAD detector and the low deviation reached between the total calculated filter transmission and the individual filter transmission measurements (≤0.05%) performed with an integrating sphere with attached Si-photodiode as standard detector.Results The relative standard uncertainty of the Si-SPAD detection efficiency measurement achieved is now as low as ~0.16%. Furthermore, the investigation of the detection efficiency homogeneity of two commercial Si-SPAD detectors from different manufacturers and with different sensor diameters is also presented. The obtained homogeneity is ≤2.2% within a region of diameter of 40 μm.ConclusionsThe detailed analysis presented in this paper shows the potential for achieving low measurement uncertainties for Si-SPAD detector calibration even in the low photon flux range. The low uncertainties are only to be realized for reproducible measurement conditions, i.e. in specific for equal beam sizes and beam shapes and well as for an irradiation of equal active areas of the detector. This, however, will be difficult to obtain when measurements are performed at different national metrology institutes.

Highlights

  • Silicon single-photon avalanche diodes (Si-SPADs) are the most used devices for measuring ultra-weak optical radiant fluxes in many quantum technology fields, such as quantum optics, quantum communication, quantum computing, etc

  • The detailed analysis presented in this paper shows the potential for achieving low measurement uncertainties for Si-SPAD detector calibration even in the low photon flux range

  • This, will be difficult to obtain when measurements are performed at different national metrology institutes

Read more

Summary

Introduction

Silicon single-photon avalanche diodes (Si-SPADs) are the most used devices for measuring ultra-weak optical radiant fluxes in many quantum technology fields, such as quantum optics, quantum communication, quantum computing, etc. The detection efficiency was determined with a relative standard uncertainty of approx. These positions should be far away from the focal plane, so that the active area of the Si-SPAD detector is much smaller than the laser beam profile.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.