Abstract
For event-related data obtained from an experimental paradigm with a periodic design, spectral density at the fundamental frequency of the paradigm has been used as a template-free activation detection measure. In this article, we build and expand upon this detection measure to create an improved, integrated measure. Such an integrated measure linearly combines information contained in the spectral densities at the fundamental frequency as well as the harmonics of the paradigm and in a spatial correlation function characterizing the degree of co-activation among neighboring voxels. Several figures of merit are described and used to find appropriate values for the coefficients in the linear combination. Using receiver-operating characteristic analysis on simulated functional magnetic resonance imaging (fMRI) data sets, we quantify and validate the improved performance of the integrated measure over the spectral density measure based on the fundamental frequency as well as over some other popular template-free data analysis methods. We then demonstrate the application of the new method on an experimental fMRI data set. Finally, several extensions to this work are suggested.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.