Abstract

Solution prepared hybrid solar cells show promising low cost technology for electricity generation from sun light, although their power conversion efficiency has to be improved. One of the approaches is to increase the absorbance or charge carrier mobility of organic semiconductors. In this work, pristine single walled carbon nanotubes (SWCNT) were added into poly(3-hexylthiophene) (P3HT) solution to form P3HT:SWCNT composite films with different weight percent (wt%) of SWCNT. It is observed that optical absorbance spectra as well as the morphology of the composite films were modified by the addition of SWCNTs. This phenomenon could be explained by the π-π interaction between the conjugated polymer and carbon nanotubes. Most importantly, the electrical conductivities of the composite films increased with the SWCNT wt%. When these films were used as hole conductor layers in inverted planar hybrid solar cell, with CdS thin films as electron acceptor layers, the fill factor (FF) and open-circuit voltage (Voc) of the corresponding cells were decreased with the increase of the wt% of SWCNT. However, the short-circuit current density (Jsc) and the power conversion efficiency (PCE) showed a maximum value at about 0.4wt% of SWCNT in P3HT. The transient photovoltage measurements (TPV) revealed that the presence of SWNCT promoted the charge recombination process at P3HT/CdS interface, and as a result, reduced the Voc. The photovoltaic performance of the hybrid solar cells could be optimized by choosing an adequate weight percentage of SWCNT in P3HT to balance the charge carrier transport and charge recombination processes at the donor-acceptor interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.