Abstract

Hydrologic risk analysis for dam safety relies on a series of probabilistic analyses of rainfall-runoff and flow routing models, and their associated inputs. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated in order to evaluate the probability of dam overtopping. Typically, parametric density estimation methods have been applied in this setting, and the exhaustive Monte Carlo simulation (MCS) of models is used to derive some of the distributions. Often, the distributions used to model some of the random variables are inappropriate relative to the expected behaviour of these variables, and as a result, simulations of the system can lead to unrealistic values of extreme rainfall or water surface levels and hence of the probability of dam overtopping. In this paper, three major innovations are introduced to address this situation. The first is the use of nonparametric probability density estimation methods for selected variables, the second is the use of Latin Hypercube sampling to improve the efficiency of MCS driven by the multiple random variables, and the third is the use of Bootstrap resampling to determine initial water surface level. An application to the Soyang Dam in South Korea illustrates how the traditional parametric approach can lead to potentially unrealistic estimates of dam safety, while the proposed approach provides rather reasonable estimates and an assessment of their sensitivity to key parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.