Abstract

Abstract The Zn–22Al alloy was subjected to equal-channel angular pressing (ECAP) to improve its high strain rate (HSR) superplasticity at room temperature (RT). A well-designed two-step ECAP process formed an ultrafine-grained (UFG) microstructure with an average grain size of 200 nm as the lowest one obtained so far after ECAP processing of this alloy. Also, agglomerate- and texture-free microstructure with UFG Al-rich α- and Zn-rich η-grains separated mostly by high-angle grain boundaries (HAGBs) was produced by this process. The maximum RT elongation was achieved to be 400% with a strain rate sensitivity of 0.30 at a very high strain rate of 5×10 −2 s −1 after the two-step ECAP process. This elongation value is the highest one obtained at RT and at all strain rates for this alloy up to now. The current results demonstrate that such an improvement in superplasticity of Zn–22Al alloy after the two-step ECAP process can enhance its applications where RT and HSR superplasticity are strongly needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.