Abstract
This paper describes the results of the frontal crash simulation of a commercial vehicle using the nonlinear finite element method. The dynamic responses of the vehicle during the frontal crash at 48.3 km/h and 8 km/h are presented. In the developing stage of the design the structure of the front longitudinal beam is optimized, hence the amount of energy absorbed increases greatly. In the test stage of the whole vehicle, the data of the simulation predict that the hinge of the engine hood would fracture during the crash. This fact has also been validated by the test. The failure of the engine hood hinge would be a danger to both the driver and the passengers. So, according to the simulation, the structure and material of the engine hood and hinge are modified. As a result the deformation mode of the engine hood is improved accordingly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.