Abstract

Six formulations containing diacrylate monomers (from 89 to 92.5% (w/w)) as well as a phosphonated methacrylate monomer (from 1 to 10% (w/w)) were prepared. All formulations were UV-cured and the corrosion performance of the resulting coatings applied onto a steel substrate was assessed by electrochemical impedance spectroscopy (EIS). It was first shown that the coatings containing phosphonic acid methacrylate (MAPC1(OH)2) instead of methacrylate phosphonic dimethyl ester (MAPC1) presented higher corrosion protection related to the strong adhesive properties of phosphonic acid on the metal substrate. A minimum MAPC1(OH)2 content of 2.5% was determined to provide the highest impedance values (best efficiency). Then, a new bio-based compound, i.e. phosphonic acid-bearing oleic acid (phosphonated fatty acid), was synthesized and added as an inhibitor to the formulations. In the presence of this compound, the corrosion protection was notably improved. The beneficial effect of phosphonated fatty acid was explained by its inhibitive action at the steel/coating interface and by the improvement of the barrier properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.