Abstract

Since commercial non-woven air filtering materials have unstable filtering efficiency and poor moisture permeability for the abundant condensed aerosol particles in the highly humid atmospheric environment, the PLLA/PAN composite fiber material with a hydrophobic and hydrophilic gradient structure is designed and prepared by using electrode sputtering electro spinning technology. By characterizing and testing the filtrating effect of SEM, XRD, FTIR, wettability, mechanical property, N2 adsorption isotherm, and BET surface area, NaCl aerosol of PLLA fiber, PAN fiber, and PLLA/PAN composite fiber membranes, the study found that the electrode sputtering electrospinning is fine, the fiber mesh is dense, and fiber distribution is uniform when the diameter of the PAN fiber is 140-300 nm, and the PLLA fiber is 700-850 nm. In this case, PLLA/PAN composite fiber materials gather the hydrophobicity of PLLA fiber and the hydrophilicity of PAN fiber; its electrostatic effect is stable, its physical capturing performance is excellent, it can realize the step filtration of gas-solid liquid multiphase flow to avoid the rapid increase of air resistance in a high-humidity environment, and the filtrating efficiency η of NaCl aerosol particles with 0.3 μm reaches 99.98%, and the quality factor QF 0.0968 Pa-1. The manufacturing of PLLA/PAN composite fiber material provides a new method for designing and developing high-performance air filtration materials and a new technical means for the large-scale production of high-performance, high-stability, and low-cost polylactic acid nanofiber composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.