Abstract
Two NaA zeolite composite membranes of differing intermediate layer structure, one uniform and thin (less than 3 μm), the other non-uniform and thick (6–26 μm), were prepared by controlling the pore diameter of the applied support. The pevaporation performances of the membranes were evaluated in water/ethanol mixtures. The membranes having the thick intermediate layer were thermally more stable than those having the thin intermediate layer. The membranes were stable, even at about 130 °C, in the thermal shock pervaporation mode. The high thermal stability was due to the well-developed intermediate layer in which the NaA zeolite and support phases were three-dimensionally interconnected with each other. It is expected that in the novel intermediate layer, the contraction of the NaA zeolite phase is compensated and relaxed by the expansion of the support phase during heating. In the present study, it was experimentally proven that microstructural control of the intermediate layer is an effective tool for improving the thermal stability of zeolite membranes, especially those showing negative expansion during heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.