Abstract

A power line expert can easily pinpoint the type of fault that may have been occurred in a power transmission line. Transferring the experts intelligence to an artificial neural network (NN) makes the classification process fast and available online. Often the phase currents are used as NN inputs for this purpose. Lack of a somehow one-to-one relationship between the type of fault and the phases faulty currents prohibits the underlying network from being adequately trained. In a search for finding a type of feature that establishes a relatively unique link between the type of faults and the phase currents, it is noticed and mathematically proved that the ratios of the phase current jumps enjoy such a valuable advantage to be a prime choice as NN inputs. The inputs let a multi-layer perceptron (MLP) NN with about one node per phase to identify the faults accurately. The scheme works well in the presence of a various number of fault items. The superiority of the method is well realised when it is compared with the results of similar investigations using wavelet, fuzzy and others. The reference data are generated using MATLAB Power System Toolbox. The test samples are more general than those previously used in other investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.