Abstract
This study proposes a new model that couples the piezoelectric and electrostrictive behavior to minimize the polarization power of composite polymer. The development of this model is capable to predict the energy harvesting abilities of an electrostrictive composite. To improve the dielectric permittivity of electrostrictive polymer, the particles of PZT have been incorporated in order to increase the conversion efficiency of the composite. Dielectric characterization tests showed an increase in dielectric permittivity by a factor of 4.5 compared to pure polymer. Experimental measurements of harvested power validate the analytical model and demonstrate a good correlation between the two data. An equivalent of an electrical scheme has been developed, which allows modeling the two behaviors. The harvested power density under low frequency at 2% of strain can reach 0.30 μW/cm3 for 33% of PZT without the polarization field, including the conversion efficiency becomes higher. The energy harvester property of this material composite has excellent potential for several self‐powered applications such as wireless sensor networks and the internet of things.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.