Abstract

A current-perpendicular-to-plane giant magnetoresistive (CPP-GMR) device with a half-metallic electrode is one of the most promising candidates of next-generation read head for hard disk drive. In this study, we fabricate [001]-oriented polycrystalline CPP-GMR devices with the normal ferromagnet (NFM) CoFe/half-metallic ferromagnet (HMFM) Co2FeGa0.5Ge0.5 (CFGG) bilayer electrodes to enhance the magnetoresistance (MR) ratio by large interfacial spin-dependent scattering at the NFM/HMFM interface. The CoFe/CFGG bilayer electrode provides the additional large interfacial spin-dependent scattering and achieves high MR ratio of 22.7% with the CoFe(4.5 nm)/CFGG(2.5 nm) bilayer electrodes, which is almost three(two) times larger than the MR ratio with the single CoFe(CFGG) (7 nm) electrodes. The bias voltage dependent study revealed an additional advantage of increasing the output voltage |ΔV| by using the CoFe/CFGG bilayer due to the improvement of the endurance against spin-transfer torque under high bias current. A maximum output voltage of 6.5 mV was obtained with the CoFe(5.5 nm)/CFGG(1.5 nm) electrodes, which is the highest ever reported in the CPP-GMR devices with a uniform metallic spacer including high-quality epitaxial devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.