Abstract

An improved expansion of the parabolized stability equation (iEPSE) method is proposed for the accurate linear instability prediction in boundary layers. It is a local eigenvalue problem, and the streamwise wavenumber α and its streamwise gradient dα/dx are unknown variables. This eigenvalue problem is solved for the eigenvalue dα/dx with an initial α, and the correction of α is performed with the conservation relation used in the PSE. The iEPSE is validated in several compressible and incompressible boundary layers. The computational results show that the prediction accuracy of the iEPSE is significantly higher than that of the ESPE, and it is in excellent agreement with the PSE which is regarded as the baseline for comparison. In addition, the unphysical multiple eigenmode problem in the EPSE is solved by using the iEPSE. As a local non-parallel stability analysis tool, the iEPSE has great potential application in the eN transition prediction in general three-dimensional boundary layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.