Abstract

The detection and classification of bone marrow (BM) cells is a critical cornerstone for hematology diagnosis. However, the low accuracy caused by few BM-cell data samples, subtle difference between classes, and small target size, pathologists still need to perform thousands of manual identifications daily. To address the above issues, we propose an improved BM-cell-detection algorithm in this paper, called YOLOv7-CTA. Firstly, to enhance the model's sensitivity to fine-grained features, we design a new module called CoTLAN in the backbone network to enable the model to perform long-term modeling between target feature information. Then, in order to cooperate with the CoTLAN module to pay more attention to the features in the area to be detected, we integrate the coordinate attention (CoordAtt) module between the CoTLAN modules to improve the model's attention to small target features. Finally, we cluster the target boxes of the BM cell dataset based on K-means++ to generate more suitable anchor boxes, which accelerates the convergence of the improved model. In addition, in order to solve the imbalance between positive and negative samples in BM-cell pictures, we use the Focal loss function to replace the multi-class cross entropy. Experimental results demonstrate that the best mean average precision (mAP) of the proposed model reaches 88.6%, which is an improvement of 12.9%, 8.3%, and 6.7% compared with that of the Faster R-CNN model, YOLOv5l model, and YOLOv7 model, respectively. This verifies the effectiveness and superiority of the YOLOv7-CTA model in BM-cell-detection tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.