Abstract
The monoclinic scheelite (ms) BiVO4 shows great potential applications in the photocatalyst due to its strong light absorption in the visible light region. To improve the separation of photoinduced charge carriers in BiVO4, such as election and hole, BiVO4/BiOBr photocatalyst with a high visible light activity was synthesized using an in situ chemical transformation method with BiVO4 as a matrix and hydrobromic acid (HBr) as a construction agent. The effect of the concentration of BiOBr on the formation of BiVO4/BiOBr nanocomposite was studied. BiVO4/BiOBr nanocomposite was characterized in detail and the results show that the BiVO4 and BiOBr co-present in the system and BiVO4/BiOBr nanocomposite has a well hydrophilic surface. The photocatalytic properties of such nanocomposite were investigated through studying the degradation of a pollutant model (RhB), and meanwhile, the recombination of electron and hole was evaluated by photoluminescence (PL) spectroscopy. The results reveal that incorporation of BiOBr on BiVO4 could contribute to the enhanced separation and transport of photoinduced electrons and hole, leading to improved photocatalysis performance. The BiVO4/BiOBr photocatalyst could be applied as an outstanding photocatalytic material for organic pollutants degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.