Abstract

A tri-fluid electrospinning process was successfully developed to prepare tri-chamber complex nanofibers. The core–shell and Janus structure were combined to form a delicate and complicated architecture for solving the problem of co-administration of quercetin and tamoxifen citrate, improving the oral bioavailability, and enhancing their synergistic anti-breast cancer actions. Scanning electron microscope, transmission electron microscope and confocal fluorescent microscopy images showed the complex structure of the designed nanofibers. Fourier transform infrared and X-ray diffraction analyses verified that the model drugs and the polymeric excipients had good compatibility and were presented in an amorphous state. The in vitro release study certified that the tri-chamber nanofibers facilitated the rapid release of quercetin compared with that of the crude drug (90% versus 38%) and the delayed and sustained release of tamoxifen citrate at the same time interval (decreased by 1.88 times). The in vivo pharmacokinetic and pharmacodynamic analysis verified that the tri-chamber nanofibers could result in increased oral bioavailability and enhanced synergistic anticancer action of quercetin and tamoxifen citrate. The findings proved that a new medicated drug delivery system with advanced dual-, time-, and target-specific drug release profiles was developed using the electrospun complex nanostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.