Abstract

Statistically Optimal Nearfield Acoustical Holography (SONAH) can be used to reconstruct three-dimensional sound fields by projecting two-dimensional data measured on a “small” aperture that partially covers a composite sound source in a “static” fluid medium. Here, an improved SONAH procedure is proposed that includes the mean flow effects of a moving fluid medium while the sound source and receivers are stationary. The backward projection performance of the proposed procedure is further improved by using a wavenumber filter to suppress subsonic noise components. Through numerical simulations at Mach 0.6, it is shown that the improved procedure can accurately reconstruct sound source locations and radiation patterns: e.g., the spatially averaged reconstruction errors of the conventional and improved SONAH procedures are 15.40dB and 0.19dB, respectively, for a monopole simulation and 21.60dB and 0.19dB for an infinite-size panel. The wavenumber filter further reduces spatial noise, e.g., decreasing the reconstruction error from 1.73dB to 0.19dB for the panel simulation. An experiment with two loudspeakers is performed in a wind tunnel operating at Mach 0.12. The locations and radiation patterns of the two loudspeakers are successfully identified from the sound fields reconstructed by using the proposed SONAH procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.