Abstract

Robust methods for identifying patterns of expression in genome-wide data are important for generating hypotheses regarding gene function. To this end, several analytic methods have been developed for detecting periodic patterns. We improve one such method, JTK_CYCLE, by explicitly calculating the null distribution such that it accounts for multiple hypothesis testing and by including non-sinusoidal reference waveforms. We term this method empirical JTK_CYCLE with asymmetry search, and we compare its performance to JTK_CYCLE with Bonferroni and Benjamini-Hochberg multiple hypothesis testing correction, as well as to five other methods: cyclohedron test, address reduction, stable persistence, ANOVA, and F24. We find that ANOVA, F24, and JTK_CYCLE consistently outperform the other three methods when data are limited and noisy; empirical JTK_CYCLE with asymmetry search gives the greatest sensitivity while controlling for the false discovery rate. Our analysis also provides insight into experimental design and we find that, for a fixed number of samples, better sensitivity and specificity are achieved with higher numbers of replicates than with higher sampling density. Application of the methods to detecting circadian rhythms in a metadataset of microarrays that quantify time-dependent gene expression in whole heads of Drosophila melanogaster reveals annotations that are enriched among genes with highly asymmetric waveforms. These include a wide range of oxidation reduction and metabolic genes, as well as genes with transcripts that have multiple splice forms.

Highlights

  • Rhythmic behavior is ubiquitous across the spectrum of life [1,2,3,4]

  • We compare all the precision-recall curves for all the methods on these data via the area under the receiver operating characteristic (AUROC), a measure of the sensitivity and specificity of the rhythm detection methods that does not depend on the proportions of positives and negatives in the dataset

  • We use it to further assess the importance of considering asymmetric waveforms, and we explore how multiple hypothesis correction impacts the results when the true positives represent a relatively small fraction of the simulated time series, as we expect to be the case in genome-wide studies

Read more

Summary

Introduction

Rhythmic behavior is ubiquitous across the spectrum of life [1,2,3,4]. Diverse fundamental biological functions such as cell division, energy metabolism, and sleep are periodic, and a growing body of evidence implicates temporal dysregulation as a contributing factor to depression, neurodegeneration, cardiovascular disease, and metabolic disorders in higher organisms [5,6,7,8,9]. The most well-studied periodic patterns are circadian rhythms: oscillatory changes in gene expression, metabolism, physiology, and behavior with approximately 24-hour (24 h) periods that enable organisms to anticipate and respond to daily changes in their environment, such as nutrient accessibility, temperature, and light [10,11,12,13]. The components of the core clock are well characterized and are strongly conserved across a wide range of species [14, 15]. It remains to be determined how this clock couples to other molecular processes. Previous work suggests that hundreds, possibly thousands, of genes are regulated by circadian clocks [10, 15, 18]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.