Abstract
Semiconductive polymer shielding layers of power cable require stable volume resistivity to protect the insulation layer from stress enhancements when carbon black (CB)/polymer composite undergoes thermal cycles. For the CB-filled polymer composites, CB would often re-aggregate when temperature is close to the melting point of polymer matrix, so that the conductive network would be destroyed. Re-distribution of CB and re-formation of conductive CB network under thermal cycles might be the main reason for the instability of volume resistivity. In this work, the re-aggregation of CB in the CB/polymer composites was disclosed. Besides, a small amount of multi-walled carbon nanotubes (MWNTs) was employed as cofiller with CB to improve the stability of volume resistivity of the polymer composites under thermal cycles. The total weight fraction of conductive fillers (CB or CB cofilled with MWNTs) was set as 35 wt%. Compared with the polymer composites loaded with CB solely, the volume resistivity of the composites filled with CB-MWNTs was much more stable with changing temperature. This can be attributed to the enhancement of conductive networks when the MWNTs are employed as second conductive filler.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.