Abstract

The introduction of arbitrary waveform generator (AWG) technology and the availability of high power microwave amplifiers mark a “new era” in pulse EPR due to significant sensitivity improvements and the possibility to perform novel types of experiments. We present an optimized 4-pulse DEER setup that uses Gaussian observer pulses (GaussDEER) in connection with a Gaussian/shaped pump pulse. Gaussian pulses allow to experimentally remove the “2+1” pulse train ESE signal which is intrinsically present in any DEER experiment performed with rectangular pulses. Further signal improvements are obtained with shaped pump pulses, which can significantly increase the modulation depth of the DEER experiment due to their tailored excitation bandwidth. Although sequences like CP (Carr-Purcell) DEER offer advantages such as a prolongation of the dipolar evolution time, they suffer from post-processing of the time-domain data to remove artifacts. Therefore, it is worth having a 4-pulse DEER experiment free of residual “2+1” signal since this is still the main dipolar spectroscopic technique used in structural biology. In this work we focus on nitroxides, which are the spin probes primarily used in site-directed spin labeling studies of biomolecules, however, the advantages introduced by Gaussian pulses can be extended to any spin type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.