Abstract

Significant wave height prediction for the following hours is a necessity for the planning and operation of wave energy devices. For a site-specific and short-term prediction, classical numerical wave forecasting methods may not be justified as exhaustive climatological data and huge computational power are needed. In this paper, a combination of a decomposition approach and long short-term memory network was presented to forecast the significant wave heights. An improved version of complete ensemble empirical mode decomposition algorithm and recurrence quantification analysis were applied to separate the original time series into deterministic and stochastic components. Each decomposed series was forecasted by the long short-term memory network and the final predicted significant wave heights were obtained by integrating the deterministic and stochastic predictions. Wave data measured at three buoy stations along the eastern coast of the United States were utilized to verify the hybrid model. The performance of the proposed method in three different wave height ranges was evaluated. The results suggested that the hybrid model outperformed the stand-alone long short-term memory network adjusted on the unseparated signal; in particular, for longer lead times and larger wave heights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.