Abstract
The short-term optimal hydrogeneration planning is a complicated nonlinear constrained optimization problem with water delay time. To overcome the shortcomings of a standard genetic algorithm, this paper proposes a new real-value encoding self-adaptive chaotic genetic algorithm to solve this problem, which designs a new crossover operator in light of probability distribution function and a self-adaptive chaotic mutation operator combined chaotic dynamic character with artificial neural network theory. Constraints can be dealt with by using a simple direct comparison penalty function method without the need of any penalty coefficient. The feasibility of the proposed method is demonstrated for short-term generation scheduling of two test hydrosystems and the test results are compared with those obtained by the standard genetic algorithm in terms of solution quality and convergence characteristic. The simulation results show that the proposed method is capable of obtaining higher quality solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Water Resources Planning and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.