Abstract

AbstractThe goal of this study is to utilize several recent developments on rainfall data collection, downscaling of available climate models, training and forecasts from such models within the framework of a multimodel superensemble, and first a detailed examination of the seasonal climatology. The unique aspect of this study is that it became possible to use the forecast results from as many as 16 state-of-the-art coupled climate models. A downscaling component, with respect to observed rainfall estimates, uses a very dense Asian rain gauge network. This feature enables the forecasts of each model to be bias corrected to a common 25-km resolution. The downscaling statistics for each model, at each grid location, are developed during a training phase of the model forecasts. This is done wherever the observed rainfall estimates are available. In the “forecast phase,” the forecasts from all of the member models use the downscaling coefficients of the “training phase.” The downscaling and the extraction of the superensemble weights are done during the training phase. This makes use of the cross-validation principle. This means that the season to be forecasted is left out of the entire forecast dataset. Thus all of the statistics for downscaling and the superensemble construction are done separately for the forecasts of each season for all the years. The forecast phase is the season that is being forecast, where the aforementioned statistics are deployed for constructing the final downscaled superensemble.These forecasts are next used for the construction of a multimodel superensemble. The geographical distributions of the downscaling coefficients provide a first look at the systematic errors of the member model forecasts. This combination of multimodels, the vast rain gauge dataset, the downscaling, and the superensemble provides a major improvement for the rainfall climatology and anomalies for the forecast phase. One of the main results of this paper is on the improvement of rainfall climatology of the member models. The downscaled multimodel superensemble shows a correlation of nearly 1.0 with respect to the observed climatology. This high skill is important for addressing the rainfall anomaly forecasts, which are defined in terms of departures from the observed (rather than a model based) climatology. This first part of the paper provides a description of the member models, the length of the training and forecast phases, the sensitivity of results as the numbers of forecast models are increased, and the skills of the downscaled climatology forecasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.