Abstract

Event-based rainfall-runoff models are effective tools in operational hydrological forecasting and preparedness for extreme events. In the current study, the popular Natural Resources Soil Conservation curve number (NRCS-CN) model and the proposed simple nonlinear models were employed for runoff estimation. The runoff prediction capability of the NRCS model for the CN values obtained from tables was very poor in comparison to those calculated from the measured rainfall-runoff (storm-events) data. The proposed models were calibrated based on the rank-order, measured rainfall-runoff data (1,005 events) from 25 watersheds and validated in six watersheds for runoff estimation (170 events). The quantitative models’ performances were evaluated and compared based on the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS). Using tabulated CNs, the NRCS model exhibited comparatively insignificant results in the maximum number of watersheds (high RMSE, low NSE, and statistically poor PBIAS values). Using storm-event based calibrated CNs, the NRCS model showed improvement for runoff estimation. Furthermore, the proposed models without the CN concept were superior (with comparatively low RMSE, high NSE, and statistically significant PBIAS values) for depicting improved performance in almost all of the watersheds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.