Abstract

Nucleotide analogs are highly polar and ionic, which impose great challenges on bioanalysis. Ion-pairing liquid chromatography/tandem mass spectrometry (LC/MS/MS) is the predominant reported approach for such compounds. Assay ruggedness of ion-pairing LC/MS/MS methods was often a challenge due to the potential contamination of the ion source of the mass spectrometer and LC column performance deterioration caused by ion-pairing reagents. An ion-pairing reagent was only added to the reconstitution solution to minimize its exposure to the MS ion source. To achieve optimum sensitivity, high pH mobile phases and negative ion ESI were needed for the LC/MS/MS method. However, high pH mobile phases led to the accumulation of ion-pairing reagent on the analytical column, which was washed off with an acidic solution to restore the column performance. In addition, isopropanol was used as a mobile phase modifier to improve peak shape and sensitivity. The limit of detection was established at 1.0 ng/mL in the cell lysate. The calibration curve showed good linearity over the range of 1.0 to 100 ng/mL. The overall accuracy was no less than 87.7% based on four levels of quality control samples. Inter-run precision and intra-run precision across four analytical runs for low, geometric, medium and high QCs were less than 12.9. By identifying and addressing the root cause of the assay ruggedness problem, we have developed a rugged ion-pairing LC/MS/MS method for a triphosphate (TP) metabolite of BMS-986001 in peripheral blood mononuclear cells. The new method overcame challenges such as a rapid deterioration of the peak shape, increased carryover and extremely poor column life. The peak shape was well maintained throughout multiple analytical runs. This method has been successfully applied to a toxicology study in cynomolgus monkey.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.