Abstract

•Promoting the separation efficiency of pervaporation membranes is a must to meet the growing demands of society. In this study, acetone-assisted interfacial polymerization was employed to produce thin-film composite (TFC) pervaporation membranes with improved performance. Two monomers were considered—diethylenetriamine (DETA) and trimesoyl chloride (TMC); they reacted with each other to form a thin polyamide layer, which was deposited on a hydrolyzed polyacrylonitrile (HPAN) substrate. Aqueous solutions containing different concentrations of acetone were used to dissolve DETA. Introducing acetone as a cosolvent of water enhanced the sorption of DETA in the HPAN support. It also altered and improved the physicochemical properties of the TFC membranes. An optimum concentration of 50 wt% aqueous acetone solution was established. Through acetone-assisted interfacial polymerization, a TFC membrane was then fabricated, and it exhibited a high separation efficiency: permeation flux = 1641 ± 134 g∙m−2 h−1 and water concentration in the permeate = 98%–99% (feed =70 wt% aqueous isopropanol solution). Moreover, the modified TFC membrane displayed a high separation performance at a wide range of operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.