Abstract
Summary. The growth and ability of 12 summer-growing annual and perennial legumes to fix nitrogen and the response of a subsequent wheat crop was examined in a field trial on a deep cracking clay soil in the Central Highlands of Queensland. Twelve legumes [Lablab purpureus cv. Highworth, Vigna radiata cv. Satin, Macroptilium atropurpureum cv. Siratro, Medicago sativa cv. Trifecta, Vigna trilobata (CPI 13671), Macroptilium bracteatum (CPI 27404), Glycine latifolia (CQ 3368), Desmanthus virgatus cv. Marc, Desmanthus virgatus cv. Bayamo, Stylosanthes sp. aff scabra (104710), Clitoria ternatea cv. Milgarra, Cajanus cajan cv. Quest)] and grain sorghum (Sorghum bicolor cv. Tulloch) as a non-legume control were established in November 1994 and their growth monitored until March 1995. The legumes averaged greater than 5 t/ha dry matter production and 77 kg N/ha (above-ground only). Dry matter production ranged from less than 2 t/ha for G. latifolia and M. sativa to greater than 9 t/ha for D. virgatus cv. Bayamo and C. cajan. Annual legumes initially had much higher relative growth rates than the perennial legumes but they rapidily exhausted all the plant available water content of the soil thus allowing the well-established perennials to eventually match this production. The proportion of plant nitrogen (above ground) derived from N2 fixation was generally low, reflecting high soil NO3, but varied widely between species ranging from less than 20% for D. virgatus cv. Marc and G. latifolia to over 45% for C. ternatea, S. scabra and V. trilobata. The quantity of nitrogen derived from fixation was correlated with above-ground dry matter and nitrogen content. There was a significant (P<0.05) growth response by wheat following legumes compared with that following sorghum in the increasing order V. radiata = M. atropurpureum = L. purpureus > C. cajan = M. sativa = V. trilobata = M. bracteatum = G. latifolia > S. scabra = D. virgatus = C. ternatea. Previous legume growth had no significant (P>0.05) effect on yield or nitrogen concentration in a second ‘plant-back’ crop (sorghum). It was concluded that a wide range of pasture-ley legumes have the potential to improve cereal crop production in this region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.