Abstract
This study extended the knowledge over the improvement of the control performance for a seven degrees-of-freedom (7DOF) humanoid arm. An improved adaptive Gaussian radius basic function neural network (RBFNN) approach was proposed to ensure the reliability and stability of the humanoid arm control. Considering model uncertainties, the established dynamic model for the humanoid arm was divided into a nominal model and an error model. The error model was approximated by the RBFNN learning to compensate the uncertainties. The contribution of this study mainly concentrates on employing fruit fly optimization algorithm (FOA) to optimize the basic width parameter of the RBFNN, which can enhance the capability of the error approximation speed. Additionally, the output weights of the neural network were adjusted using the Lyapunov stability theory to improve the robustness of the RBFN-based error model. The simulation and experiment results demonstrate that the proposed approach is able to optimize the system state with less tracking errors, regulate the uncertain nonlinear dynamic characteristics, and effectively reduce unexpected interferences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.