Abstract

This paper is intended to study the method of solving the economic load dispatch problem (ELDP) of hydropower plants via using memetic algorithm. Based on characteristics of economical operation of the hydropower plant, this paper proposes an improvement method of mutation operator and selection operator of memetic algorithm. Taking Three Gorges hydropower station in China as an example, the performance of memetic algorithm before and after improvement is tested separately. The test result shows that the average water consumption for simulation of the improved memetic algorithm is less than that for simulation of the standard memetic algorithm by 1.35%–16.19%. When the total load of the hydropower station is low (8GW-10GW), the water consumption for the improved memetic algorithm is less than that for the standard memetic algorithm by more than 10%. When the total load of the hydropower station is high (11GW-16GW), the water consumption for the improved memetic algorithm is less than that for the standard memetic algorithm by more than 1%. This shows that improvement of mutation operator and selection operator can improve the global and local optimization capacity of memetic algorithm a lot indeed. In addition, by comparing the optimization result of memetic algorithm with that of DP algorithm, it finds that the optimization result of improved memetic algorithm can reach the same precision of optimization result of DP algorithm. Therefore, using the improved memetic algorithm to solve the ELDP problem of large hydropower stations is practical and feasible. Since “curse of dimensionality” may occur frequently while using DP algorithm to solve the ELDP problem of large hydropower plants, as a new heuristic algorithm, memetic algorithm has obvious advantages in solving large-scale, complex, highly-dimensional and dynamic problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.