Abstract

Objectives: This research work focuses on predicting traffic for the Smart City. Methods: Current research methods for traffic prediction are based on machine learning (ML) model. This article presents two contributions related to it. First, it provides feature engineering that includes feature extraction and a nature inspired optimization algorithm for selecting the best features. The mayfly optimization algorithm is improved by using the mode-based ranking method to select the best feature. Second, it uses the light-weight boosting method to train the datasets for better accuracy.Findings: The proposed Improved MayFly Optimization with LightGBM (IMFO-LGBM) is experimented with popular smart city datasets which is available in Kaggle website. IMFOLGBM shows an improvement in the prediction accuracy when compared with the baseline methods. It shows 2% of increase in the overall accuracy. Novelty:Nature inspired Mayfly optimization is improved and used to find the best feature for prediction. The selected features are then trained with the light weight boosting algorithm (i.e., Light Gradient Boosting Model). The hybrid of improved mayfly optimization and light GBM outperformed well. Keywords: IoT; Smartcity; Mayfly optimization; Machine learning and LightGBM

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.